Chem. Ber. 119, 3718-3726 (1986)

Wasserstoffübertragungen, 9¹⁾

Synthese und Analytik selektiv deuterierter 1,4-Cyclohexadiene und 1,4-Dihydronaphthaline

Martin Brock, Horst Hintze und Albert Heesing*

Organisch-Chemisches Institut der Universität Münster, Orléansring 23, D-4400 Münster

Eingegangen am 24. Juli 1986

Fünf Isotopomere des 1,4-Cyclohexadiens (1a-e) und vier des 1,4-Dihydronaphthalins (2a-d) wurden dargestellt und ihre für mechanistische Untersuchungen² hinreichende Isotopomeren-Reinheit abgesichert.

Hydrogen Transfer Reactions, 9¹⁾ Synthesis and Analytics of Selectively Deuterated 1,4-Cyclohexadienes and 1,4-Dihydronaphthalenes

Five isotopomers of 1,4-cyclohexadiene (1a - e) and four of 1,4-dihydronaphthalene (2a - d) have been synthesized in an isotopomeric purity sufficient for mechanistic experiments².

Untersuchungen zum Reaktionsmechanismus des Wasserstoff-Transfers von Dihydroarenen auf Chinone und andere Akzeptoren erfordern den Einsatz mehrerer Isotopomerer jedes Kohlenwasserstoffs, die regio- und stereoselektiv indiziert sein müssen. Zudem dürfen die Anteile an unvollständig indizierten Isotopomeren nur gering sein, da sonst insbesondere die kinetischen Messungen verfälscht werden. Für unsere in der folgenden Arbeit²⁾ beschriebenen Versuche zur Dehydrierung von 1,4-Cyclohexadien (1) und 1,4-Dihydronaphthalin (2) benötigten wir mehrere Isotopomere. Ihre Darstellung sowie die analytischen Verfahren zur Reinheitsbestimmung werden hier beschrieben.

1. Synthesen deuterierter 1,4-Cyclohexadiene 1

Von 1,4-Cyclohexadien sind zwar mehrere Isotopomere bekannt, doch gerade von den entscheidenden, stereoselektiv indizierten Edukten wurden unzureichende Reinheitsgrade berichtet ^{3,4}.

Wir haben fünf Isotopomere dargestellt. In der Tab. 1 sind der Deuterierungsgrad und ggf. die sterische Reinheit angegeben.

Das Syntheseprinzip war in allen Fällen gleich: aus den entsprechend deuterierten 1,3-Butadienen 3 wurden durch Diels-Alder-Reaktion mit (E)- β -Chloracrylsäure bei 100°C und nachfolgende Eliminierung⁵⁾ die fünf Isotopomeren erhalten. Diese Methode führt – im Gegensatz zur Verwendung anderer (reaktiverer) Dienophile⁶⁾ – zu einem Benzol-freien Produkt, so daß die aufwendige Reinigung durch präparative $GC^{4)}$ entfällt.

Tab. 1. Selektiv deuterierte 1,4-Cyclohexadiene^{a)}

				D_2 D_2	
	1a	1b	1c	1d	10
D _n -Gehalt ^{b)} : Sterische Reinheit ^{c)} :	99.3	96.0 >90 ^{d)}	91.6 >85	99.6 —	98.6 _

^{a)} Analysenmethoden und Fehlergrenzen: siehe Kapitel 3. – ^{b)} Gehalt an dem gewünschten Isotopomeren in %. – ^{c)} Gehalt an dem gewünschten Stereoisomeren in %. – ^{d)} Die Butadien-Vorstufe war zu $\geq 95\%$ sterisch einheitlich.

Für die Synthese der deuterierten 1,3-Butadiene 3 erwiesen sich von den zahlreichen Vorschlägen in der Literatur die folgenden Wege als optimal:

a) $[1,1,4,4-D_4]$ -3 läßt sich aus Sulfolen durch H/D-Austausch und Pyrolyse gut darstellen⁶.

b) Aus Perdeuterio-1,3-butadien wurde analog über das Perdeuteriosulfolen das $[2,3-D_2]$ -3 erhalten⁷.

c) Nach der Methode von Stephenson⁸⁾ wurde in den entsprechenden, sterisch einheitlichen Chlorbutadienen mittels $Zn/Cu/D_2O$ das Chlor durch Deuterium substituiert. Dies läuft bei den Z-Isomeren ausschließlich unter Retention ab. Erhalten wurden das $(Z)-[1-D_1]-3$ und das $(Z,Z)-[1,4-D_2]-3$.

d) Die Synthese^{3,8)} des (E,Z)-[1,4-D₂]-3 nach dem obigen Verfahren ergibt ein Produkt mit einer für kinetische Untersuchungen unzureichenden Reinheit. Mit der vielstufigen Synthese nach *Fleming*⁹⁾ erhielten wir ein Produkt von hinreichender Reinheit (vgl. dagegen Lit.⁴⁾).

2. Synthesen deuterierter 1,4-Dihydronaphthaline 2

Bei 2 ist nur das perdeuterierte Isotopomere beschrieben¹⁰, das wegen der Häufung von Isotopeneffekten für unsere Zwecke wenig geeignet ist. Die Darstellung anderer Isotopomerer unterblieb bisher auch wegen der zu befürchtenden experimentellen Schwierigkeiten¹¹. Jetzt wurden 2a-d (Tab. 2) synthetisiert.

2c konnte durch die (sterisch unselektive) Birch-Reduktion in größerer Menge hergestellt und als Hg(OAc)₂-Addukt¹²⁾ vom Naphthalin befreit werden.

				$\bigcup_{D_2}^{D_2}$
•	2a	2Ь	2c	2d
D _n -Gehalt: Sterische Reinheit ^{b)} :	98.6	95.0 ≥95	95.0	98.0

Tab. 2. Selektiv deuterierte 1,4-Dihydronaphthaline^{a)}

^{a)} Vgl. Tab. 1, Fußnoten a), b) und c). - ^{b)} Bestimmt im Diol 4, vgl. Kapitel 3.2.

Für die Darstellung von 2a und 2d bot sich prinzipiell derselbe Weg an: aus selektiv deuterierten o-Xylylbromiden erhält man durch Brom-Eliminierung mittels Zink/Ultraschall, Abfangen des o-Chinodimethans mit Maleinsäureanhydrid¹³⁾ und Hydrolyse eine Dicarbonsäure, die durch oxidative Eliminierung¹⁴⁾ 2 ergibt. Die Bromide wurden auf klassischem Wege dargestellt.

Chem. Ber. 119 (1986)

Für die Synthese des stereoselektiv deuterierten **2b** gingen wir von einem bekannten syn-Diepoxid des Naphthalins¹⁵⁾ aus, dessen Synthese wir optimierten. Öffnung der Oxiran-Ringe mit LiAlD₄ führte zum *cis*-Diol **4**, damit auch zur *cis*-Stellung der Indizierung.

Die Eliminierungsmethode nach *Barton*¹⁶ erwies sich hier als deutlich besser als mehrere andere Varianten, die hier teils ganz versagten^{17a}, teils zu schwer trennbaren Gemischen führten^{17b-e}.

3. Analytische Verfahren

3.1. Bestimmung des Deuteriumgehaltes

Die massenspektrometrischen Messungen der Edukte wurden nach einem von uns schon früher entwickelten Verfahren^{1,18)} bei 12-16eV durchgeführt. Im Gegensatz zu anderen Meßtechniken³⁾ wird hierbei die Bildung von M-n-Peaks bei 2 vollständig, bei 1 sehr weitgehend unterdrückt. Der Fehler beträgt dadurch nur 1-2%. Bei den flüchtigen Cyclohexadienen mußte die Probe während der Messung stark gekühlt werden.

3.2. Bestimmung der Regio- und Stereoselektivität der Deuterierung

Die Position des Deuteriums wurde durch ¹H- und ¹³C-NMR-Spektren festgelegt. Sie entsprach in allen Fällen dem Syntheseweg (Fehler ca. 2%).

Die cis- bzw. trans-Stellung der beiden Deuteriumatome wurde auf mehreren, unabhängigen Wegen abgesichert. Bei den Zwischenstufen der 1,4-Cyclohexadiene [(Z,Z)- und (E,Z)- $[1,4-D_2]$ -3] wurde sie aus den ¹H-NMR-Spektren abgeleitet (Fehler ca. 5%).

Für 1b und 1c gaben die Raman-¹⁹⁾ und vor allem die IR-Spektren deutliche Unterschiede, besonders im Bereich um 850 cm⁻¹, so daß sie ebenfalls zur Untersuchung der Reinheit geeignet sind.

Zur Absicherung wurden 1b und 1c pyrolytisch dehydriert. Hierfür wird eine Eliminierung von *cis*-ständigen Wasserstoffen als H₂ beschrieben^{9,20)}. Die Bildung von Cyclohexen und Cyclohexan zeigt jedoch, daß daneben zu ca. 20% Disproportionierung eintritt, wohl als radikalische, sterisch unselektive Reaktion (vgl. Lit.²¹⁾). Dies bewirkt einen deutlichen systematischen Fehler. Innerhalb der Fehlergrenzen stimmten die Ergebnisse dieser Tracer-Versuche aber mit denen aus den spektroskopischen Messungen überein.

Schließlich ergab sich die sterische Anordnung des Deuteriums in **2b** aus dem ¹H-NMR-Spektrum des Diols **4**: das zum Vergleich hergestellte *trans*-Diol²²⁾ war darin als Verunreinigung nicht enthalten.

Die Produkte liegen damit in der für mechanistische Untersuchungen des Wasserstoff-Transfers benötigten Isotopomeren-Reinheit vor.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung der Arbeit.

Experimenteller Teil

1. Allgemeine Angaben: Die allgemeinen Verfahren sind schon beschrieben^{1,18)}. – IR-Spektren: Gerät Perkin-Elmer Grating Spectrometer 421; dünne Schicht. – Raman-Spek-

tren: Spektrometer T 800 der Firma Coderg, Argon-Laser, 514 nm. Bei den IR- und Raman-Spektren sind nur die zur Unterscheidung von 1b und 1c wichtigen Banden angegeben. – NMR-Spektren: Bei den Isotopomeren von 1, 2 und 3 sind nur die für die Deuterierung typischen Veränderungen angeführt. Bei den stereoselektiv deuterierten 1,3-Butadienen wurden die Z-ständigen H als 1a-H bzw. 4a-H bezeichnet, die E-ständigen als 1b-H bzw. 4b-H. – Massenspektroskopische Isotopenanalysen bei einer Anregungsspannung von 12-16 eV: a) bei 2: wie bei den 1,2-Isomeren^{1,18}; b) bei 1 mußte der Probebehälter an der Schubstange mit flüssigem N₂ gekühlt werden. Angegeben ist der Anteil der Isotopomeren in %. – GC: Bei 1 Duran-Säule 2.5 m, 2.0 mm Innen-Ø, 20% Fraktonitril III auf Chromosorb WAW DMCS, bei 75°C; bei 3 und dessen Chlor-Derivaten: Duran-Kapillare 130 m, 0.2 mm Innen-Ø, statisch belegt mit GE-SE-52, bei 25°C.

Falls bei den Synthesen nach Literaturvorschriften – oft für nicht-indizierte Verbindungen – gearbeitet werden konnte, sind nur wichtige Änderungen und die analytischen Werte angeführt. – Für Versuche unter Druck sowie bei den Pyrolysen von 1 wurden Duran-Ampullen (Länge 200 mm, Innen- \emptyset 11 oder 17 mm, Wandstärke 2 mm) verwendet.

2. Synthesen deuterierter 1,4-Cyclohexadiene

2.1. Deuterierte 1,3-Butadiene (3)

2.1.1. [1,1,4,4-D₄]-1,3-Butadien

a) $[2,2,5,5-D_4]-2,5-Dihydrothiophen-1,1-dioxid^{23}$: Durch fünfmaliges Äquilibrieren von 2,5-Dihydrothiophen-1,1-dioxid mit Deuteriumoxid/K₂CO₃. D_a -Gehalt (in dem im Gerät durch Cycloreversion gebildeten 1,3-Butadien) 0.7% D_3 , 99.3% D_4 (Lit.⁶⁾ D_3 4.5, D_4 95.5).

b) [1,1,4,4-D₄]-1,3-Butadien⁶): Durch Pyrolyse der Vorstufe⁶).

2.1.2. [2,3-D2]-1,3-Butadien

a) $[1,1,2,3,4,4-D_g]$ -1,3-Butadien: Die Reduktion von Hexachlor-1,3-butadien erfolgte analog zu Lit.²⁴): 52.0 g (0.20 mol) Perchlor-1,3-butadien wurden innerhalb 2 h in einem schwachen Stickstoffstrom zur siedenden Suspension einer Zn-Cu-Legierung [in situ aus 98.0 g (1.50 mol) Zink hergestellt] in 120 ml absol. Dioxan und 30.0 g (1.5 mol) Deuteriumoxid getropft. Das durch eine Kühlfalle (0°C) und ein CaCl₂-Rohr geleitete Butadien wurde bei -78°C in eine Ampulle kondensiert. Ausb. ca. 10 ml (ca. 60%).

b) $[2,2,3,4,5,5-D_6]-2,5-Dihydrothiophen-1,1-dioxid^7$: Durch Umsetzung der Vorstufe mit SO₂ bei 100°C.

c) $[3,4-D_2]$ -2,5-Dihydrothiophen-1,1-dioxid⁷): Durch 12maligen H/D-Austausch in der Vorstufe mit H₂O/K₂CO₃. D_n-Gehalt (vgl. 2.1.1.a)): D₁ 1.6, D₂ 98.4 (Lit.⁷⁾, aus Folgeprodukten: D₁ ca. 10, D₂ ca. 86).

d) [2,3-D₂]-1,3-Butadien⁷: Durch Pyrolyse der Vorstufe analog zu 2.1.1.b).

2.1.3. (Z)-[1-D₁]-1,3-Butadien: Durch Austausch des Chlors durch Deuterium in (Z)-1-Chlor-1,3-butadien²⁵⁾ (GC-Analyse: \geq 99.5%) in Tetrahydrofuran analog zu einer Vorschrift von Stephenson⁸⁾. Ausb. ca. 90%. GC-Analyse: 97% 1,3-Butadien, 3% Tetrahydrofuran.

2.1.4. $(Z,Z)-[1,4-D_2]-1,3$ -Butadien: (Z,Z)-1,4-Dichlor-1,3-butadien²⁶⁾ wurde durch Destillation an einer Spaltrohrkolonne rein erhalten (GC-Analyse: 97.5% Z,Z-, 2.5% E,Z-Isomeres) und dann nach der Vorschrift von Stephenson⁸⁾ umgesetzt. GC-Analyse: 92%. – ¹H-NMR: $\delta = 4.97$ (d; $J_{1b,2} = 8.8$ Hz, 1.90 H, 1b- und 4b-H); Signal einer E-Gruppierung: 5.08 (d; $J_{1u,2} = 16.3$ Hz, 0.10 H, 1a- und 4a-H).

2.1.5. (E,Z)-[1,4-D₂]-1,3-Butadien: Auf dem von Fleming angegebenen Syntheseweg⁹) über folgende Stufen:

a) (2R,5S)-Tricyclo[4.2.2.0^{2.5}]deca-3,7,9-trien-7,8-dicarbonsäure-dimethylester²⁷): Die thermisch wenig stabile Verbindung zerfällt bei Synthese wie Destillation (<150 °C) teilweise in Dimethylphthalat, das den weiteren Synthesegang aber nicht stört.

b) (2R,3S,4R,5S)- $[3,4-D_2]$ -Tricyclo $[4.2.2.0^{2.5}]$ deca-7,9-dien-7,8-dicarbonsäure-dimethylester: Die Vorstufe wurde mit D₂/Palladium-Aktivkohle (Merck, 10%Pd) deuteriert (vgl. Lit.²⁸). Ausb. 95% (¹H-NMR-spektroskopisch). – ¹H-NMR: $\delta = 1.10$ (m; 2H, 3- und 4-H), 2.31 (m; 2H, 2- und 5-H), 3.67 (s; 6H, Methyl-H), 3.92 (m; 2H, 1- und 6-H), 6.43 (m; 2H, 9- und 10-H).

c) cis-[3,4-D₂]-1-Cyclobuten: Bei der Pyrolyse der Vorstufe (vgl. Lit.²⁸⁾) entsteht teilweise bereits das Endprodukt. Ausb. ca. 90%. GC-Analyse: ca. 70% Cyclobuten, ca. 30% **3**.

d) (E,Z)-[1,4- D_2]-1,3-Butadien: Das Gemisch der Vorstufe (ca. 4 ml) wurde mit einem Stickstoffstrom bei 100 Torr innerhalb 3 h durch ein Duranrohr geleitet, das auf 285 ± 10 °C aufgeheizt war. Ausb. ca. 4 ml (ca. 100%). GC-Analyse: >99.5%. - ¹H-NMR: δ = 4.97 (d; $J_{1b,2}$ = 8.8 Hz, 1.00 H, 1b- und 4b-H), 5.08 (d; $J_{1a,2}$ = 16.3 Hz, 1.00 H, 1a- und 4a-H).

2.2. Deuterierte 1,4-Cyclohexadiene

2.2.1. Allgemeine Vorschrift

a) 2-Chlor-4-cyclohexen-1-carbonsäure⁵: 6.0 ml (70 mmol) 1,3-Butadien wurden bei -78 °C in eine Glasampulle kondensiert und mit 10.7 g (100 mmol) (E)-3-Chlor-2-propensäure versetzt. Die unter 0.1 Torr abgeschmolzene Ampulle wurde im Autoklaven (Stickstoffdruck >25 bar) 120 h auf 100 °C erhitzt. Nach beendeter Reaktion wurden die nichtflüchtigen Produkte in eine Lösung von 9.9 g (100 mmol) KHCO₃ in 35 ml Wasser aufgenommen und durch Filtration und Extraktion mit *n*-Pentan von polymeren Nebenprodukten abgetrennt. Das Produkt wurde mit halbkonz. Salzsäure gefällt und aus *n*-Hexan umkristallisiert. Ausb. 5.1 g (45%) (Lit.⁵⁾ 68%). Temperaturerhöhung sowie Verlängerung der Reaktionszeit brachten keine Ausbeutesteigerung; sie bewirkten lediglich verstärkte Polymerenbildung.

b) 1,4-Cyclohexadien⁵: Die Vorstufe wurde mit KHCO₃ in das Kaliumsalz übergeführt und dieses unter Zusatz von NaI in Hexamethylphosphorsäuretriamid 4 h bei 0.1 Torr auf 60° C erwärmt. 1 wurde bei -78° C kondensiert, zur Reinigung bei 1 Torr und 0°C in eine zweite Kühlfalle destilliert und über Na₂SO₄ getrocknet. Ausb. 1.4 g (60%) (Lit.⁵⁾ 70%). GC-Analyse: >99.5%.

2.2.2. $[3-D_1]$ -1,4-Cyclohexadien³⁾ (1a): Aus (Z)-[1-D₁]-3, vgl. 2.1.3. GC-Analyse: >99.5% 1. - ¹H-NMR: $\delta = 2.65$ (m; 3.08 H, 3- und 6-H), 5.69 (m; 2H, Vinyl-H). - ¹³C-NMR: $\delta = 25.34$ [t; C-3, $J(^{13}C-^{2}H) = 19.5$ Hz], 25.72 (t; C-6). - D_n-Gehalt: D₀ 0.7, D₁ 99.3 (Lit.^{3,4)} D₁ 95-96).

2.2.3. $cis [3,6-D_2] - 1,4-Cyclohexadien^{30}$ (1b): Aus $(Z,Z) - [1,4-D_2] - 3$, vgl. 2.1.4. GC-Analyse: >99.5% 1. – IR: τ_{CHD} : 835 m, 870 vw; γ_{CHD} : 895 m, 910 vs; δ_{CHD} : 1270 s, 1280 s; $v_{C=C}$: 1635 s, 1645 Sch, 1653 m, 1662 m cm⁻¹. – Raman: τ_{CHD} : 835 s; γ_{CHD} : 910 vw; δ_{CHD} : 1257 vs, 1276 s; $v_{C=C}$: 1677 s cm⁻¹. – ¹H-NMR: $\delta = 2.65$ (m; 2.02 H, 3- und 6-H), 5.69 (d; $J_{2,3} = 0.8$ Hz, 4H, Vinyl-H). – ¹³C-NMR: $\delta = 25.40$ [t; C-3 und -6, $J(^{13}C^{-2}H) = 19.5$ Hz]. – Zur sterischen Reinheit siehe Hauptteil, Kap. 3.2. – D_n -Gehalt: D_1 4.0, D_2 96.0 (Lit.³⁾ D_2 84–86).

2.2.4. trans-[3,6-D₂]-1,4-Cyclohexadien^{3,4,9)} (1c): Aus (E,Z)-[1,4-D₂]-3, vgl. 2.1.5. GC-Analyse: >99.5% 1. – IR: τ_{CHD} : 840 vw, 870 s; γ_{CHD} : 910 s; δ_{CHD} : 1275 vs; $\nu_{C=C}$: 1635 s, 1645 s cm⁻¹. – Raman: τ_{CHD} : 822 s, 837 Sch, 877 vw; δ_{CHD} : 1205 vs, 1276 m; $\nu_{C=C}$: 1673

vs cm⁻¹. – ¹H-NMR: δ = 2.65 (m; 2.08 H, 3- und 6-H), 5.69 (d; $J_{2,3}$ = 1.2 Hz, 4 H, Vinyl-H). – ¹³C-NMR: δ = 25.40 [t; C-3 und -6, $J(^{13}C^{-2}H)$ = 19.5 Hz], 25.77 (t; C-3 und -6). – Zur sterischen Reinheit siehe Hauptteil, Kap. 3.2. – D_n -Gehalt: D_1 8.4, D_2 91.6 (Lit.⁹⁾ D_2 96; Lit.^{3.4)} D_2 84–86).

2.2.5. $[3,3,6,6-D_4]$ -1,4-Cyclohexadien⁵⁾ (1d): Aus $[1,1,4,4-D_4]$ -3, vgl. 2.1.1. GC-Analyse: >99.5% 1. - ¹H-NMR: $\delta = 5.69$ (s; Vinyl-H). Das Signal der Allyl-Wasserstoffe fehlte völlig. - ¹³C-NMR: $\delta = 24.93$ [quint; C-3 und -6, $J({}^{13}C-{}^{2}H = 19.5$ Hz]. - D_n -Gehalt: D₃ 0.4, D₄ 99.6 (Lit.⁵⁾ D₂ 96; Lit.^{3,4)} 90-95).

2.2.6. $[1,2-D_2]-1.4$ -Cyclohexadien (1e): Aus $[2,3-D_2]$ -3, vgl. 2.1.2. GC-Analyse: >99.5% 1. - ¹H-NMR: δ = 2.65 (d, $J_{3,4}$ = 1.1 Hz; 4.00 H, 3- und 6-H), 5.69 (d; 2.03 H, 4- und 5-H). - ¹³C-NMR: δ = 25.59 (t; C-3 und -6), 123.91 [t; C-1 und -2, $J(^{13}C^{-2}H)$ = 24.0 Hz]. - D_n -Gehalt: D_1 1.4, D_2 98.6.

2.3. Pyrolyse von deuterierten 1,4-Cyclohexadienen: 20 mg 1 wurden in einer Ampulle (11 mm Innen- \emptyset) bei -178 °C und 0.01 bar abgeschmolzen und 1 h auf 340 °C erhitzt⁹). GC-Analyse: 87.4% Benzol, 5.2% 1, 6.2% Cyclohexen und 1.2% Cyclohexan. Der Isotopengehalt wurde teils in der Reinsubstanz nach Abtrennung durch präparative GC ermittelt, teils durch GC-MS-Kopplung.

Edukt	D ₀	nzol D2	
1a	32.5 + 0.9	67.5 + 0.9	a,b)
1 b	16.8 ± 0.2 185 ± 05	10.7 ± 0.2 9.8 ± 0.8	71.5 ± 0.3 71.9 ± 0.9^{a}
1c	5.5 ± 0.1	83.7 ± 0.5	10.6 ± 0.6

^{a)} Bestimmt durch GC/MS-Kopplung. - ^{b)} Diese Werte werden zur Korrektur der Daten für **1b** und **1c** wegen deren D₁-Gehalt benötigt.

3. Synthesen deuterierter 1,4-Dihydronaphthaline

3.1. $[1,1-D_2]-1,4$ -Dihydronaphthalin (2a)

a) $1-(Hydroxy-[D_2]methyl)-2-methylbenzol:$ Methyl-2-methylbenzoat wurde mit LiAlD₄ (99.4 \pm 0.1% D, Rohstoff-Einfuhr) reduziert. Ausb. 93.5%. D-Gehalt: \geq 95% D₂ (¹H-NMR) in der Hydroxymethylgruppe.

b) 1-(Brom-[D₂]methyl)-2-methylbenzol: Die Vorstufe wurde in absol. Toluol mit Phosphortribromid bei 100 °C umgesetzt (vgl. Lit.²⁹). Ausb. 90%.

c) $l - (Brommethyl) - 2 - (brom - [D_2]methyl) benzol:$ In 100 ml absol. CCl₄ wurden unter Stickstoff 10.0 g (53 mmol) der Vorstufe mit 8.9 g (60 mmol) *N*-Bromsuccinimid und 100 mg Azobisisobutyronitril versetzt. Nach 1 h bei 70 °C wurde filtriert, eingeengt und der Rückstand aus Essigester umkristallisiert. Ausb. 10.1 g (72%).

d) $[1,1-D_2]$ -1,2,3,4-Tetrahydro-2,3-naphthalindicarbonsäure-anhydrid: 4.00 g (15.0 mmol) der Vorstufe wurden unter Stickstoff mit 2.00 g (20.4 mmol) Maleinsäureanhydrid in 25 ml absol. Dioxan gelöst und mit 2.0 g aktiviertem Zink³⁰⁾ 18 h im Ultraschallbad bei 25 °C umgesetzt ^{13,31)}. Ausb. 2.76 g (90%) (Lit.¹³⁾ 89%).

e) [1,1-D₂]-1,2,3,4-Tetrahydro-2,3-naphthalindicarbonsäure: Die Vorstufe wurde durch 6stdg. Erhitzen mit Wasser hydrolysiert. Die Säure kristallisierte in der Kälte aus. Ausb. 96%.

f) [1,1-D₂]-1,4-Dihydronaphthalin (2a): 1.00 g (4.50 mmol) der Vorstufe wurde mit Blei(IV)-acetat in absol., sauerstoffgesättigtem Pyridin³²⁾ bei 60°C umgesetzt. Nach Ende der CO₂-Entwicklung wurde auf halbkonzentrierte, kalte Salpetersäure gegossen und zweimal mit Petrolether extrahiert. Die organische Phase wurde gewaschen, getrocknet und eingeengt. Ausb. 0.42 g (71%). GC-Analyse: 80% 2, 20% Naphthalin. Die Reinigung erfolgte durch präparative Gaschromatographie. GC-Analyse: $\geq 99.5\%$ 2. D_n-Gehalt: D₀ 0.4, D₁ 1.0, D₂ 98.6. – ¹H-NMR: $\delta = 3.4$ (m; 2.0 H, 1- und 4-H), 5.9 (m; 2.0 H, 2- und 3-H).

3.2. $[1,1,4,4-D_4]-1,4-Dihydronaphthalin$ (2d)

a) 1,2-Bis(hydroxy- $[D_2]$ methyl)benzol: Diethylphthalat wurde mit LiAlD₄ in absol. Ether reduziert. Ausb. 87%.

b) 1,2-Bis(brom-[D₂]methyl)benzol: Die Vorstufe wurde in Toluol mit Phosphortribromid in das Dibromid übergeführt²⁹). Ausb. 93% (Lit.²⁹⁾ 96%).

c) $[1,1,4,4-D_4]-1,4-Dihydronaphthalin (2d):$ Die Vorstufe wurde analog 3.1.d) bis f) umgesetzt. GC-Analyse: \geq 99.5% 2. D_n-Gehalt: D₃ 2.0, D₄ 98.0. – ¹H-NMR: Das Signal der Benzyl-H fehlt.

3.3. cis/trans-[1,4-D₂]-1,4-Dihydronaphthalin (2c): Naphthalin wurde mit Natrium/ Ethan-[D]ol in Toluol reduziert (vgl. Lit.³³). Die Reinigung erfolgte über das Hg(OAc)₂-Addukt¹². Ausb. 35%. GC-Analyse: \geq 99.5% 2. D_n-Gehalt: D₁ 5.0, D₂ 95.0. - ¹H-NMR: $\delta = 3.3$ (m; 2.05 H, 1- und 4-H), 5.90 (d, ³J_{1,2} = 1.4 Hz; 2.0 H, 2- und 3-H).

3.4. $cis-[1,4-D_2]-1,4-Dihydronaphthalin$ (2b)

a) syn-1,2:3,4-Naphthalindioxid: Die Literaturvorschrift¹⁵⁾ wurde optimiert. Die Lösung von 10.0 g (28 mmol) cis-1,2,3,4-Tetrahydro-2,3-bis(trifluoracetoxy)naphthalin¹⁵⁾, 15.0 g (84 mmol) N-Bromsuccinimid und 100 mg Dibenzoylperoxid in 100 ml CCl₄ wurde 1.5 h unter Stickstoff auf 65 °C erhitzt. Alle 15 min gab man jeweils 100 mg Dibenzoylperoxid zu. Die erkaltete Lösung wurde unter Stickstoff filtriert und eingeengt. Der Rückstand wurde in 15 ml absol. Ethanol gelöst und bei 0 °C innerhalb von 40 min mit der Lösung von 1.2 g Natrium in 30 ml absol. Ethanol versetzt. Nach 1 h bei 0 °C und 2 h bei 20 °C wurde mit 40 ml Wasser versetzt und zweimal mit 30 ml Chloroform extrahiert. Die organische Phase wurde getrocknet und eingeengt. Umkristallisation aus Essigester. Ausb. 2.05 g (45%) (Lit.¹⁵⁾ 30%).

b) (1R,2S,3R,4S)- $[1,4-D_2]$ -1,2,3,4-Tetrahydro-2,3-naphthalindiol (4): 3.00 g (18.8 mmol) der Vorstufe wurden in 30 ml absol. Ether suspendiert und mit 0.84 g (20.0 mmol) LiAlD₄ (Deuterierungsgrad 99.4 \pm 0.1%, Rohstoff-Einfuhr) umgesetzt (vgl. Lit.¹⁵). Umkristallisiert wurde aus CHCl₃. Im ¹H-NMR-Spektrum fehlten die Signale des *trans*-1,2,3,4-Tetrahydro-2,3-naphthalindiols (dargestellt nach Lit.^{22,33}).

c) $O,O'-[(1R,2S,3R,4S)-[1,4-D_2]-1,2,3,4-Tetrahydronaphthalin-2,3-diyl]-thiocarbonat (5): 1.60 g 4 wurden mit 2.10 g (10.2 mmol) 1,1'-Thiocarbonyldiimidazol^{17a)} in Toluol 1 h unter Rückfluß erhitzt. Das Produkt kristallisierte in der Kälte aus und wurde aus Methanol umkristallisiert. Ausb. 1.51 g (76%). Schmp. 183°C. - MS: <math>m/z = 206$ (75%, M⁺).

C₁₁H₁₀O₂S (206.2) Ber. C 64.06 H 4.88 Gef. C 64.13 H 4.94

d) cis- $[1,4-D_2]-1,4-Dihydronaphthalin (2b): 1.00 g (4.8 mmol) 5 wurden in 5 ml Methyl$ iodid 7 h unter Rückfluß erhitzt. Anschließend wurde das Methyliodid abdestilliert und derRückstand, in 10 ml absol. Ethanol gelöst, mit 1.0 g aktiviertem Zink³⁰ 1 h im Ultraschallbad umgesetzt (vgl. Lit.¹⁶). Es folgten Hydrolyse und zweimalige Extraktion mit je 30 mlPetrolether. Die organische Phase wurde mit Wasser gewaschen, getrocknet und im Rota-

tionsverdampfer eingeengt. Eine weitere Reinigung war nicht nötig. Ausb. 375 mg (59%). GC-Analyse: 99.5% 2. D_n -Gehalt: D_0 2.6, D_1 2.4, D_2 95.0. - ¹H-NMR: $\delta = 3.35$ (m; 2.02 H, 1- und 4-H), 5.92 (d, ${}^{3}J_{1,2} = 1.2$ Hz; 2.00 H, 2- und 3-H).

- ¹⁾ 8. Mitteilung: A. Heesing und H.-J. Laue, Chem. Ber. 119, 1232 (1986).
- ²⁾ M. Brock, H. Hintze und A. Heesing, Chem. Ber. 119, 3727 (1986), nachstehend.
- ³⁾ P. Müller, D. Joly und F. Mermoud, Helv. Chim. Acta 67, 105 (1984).
- ⁴⁾ H. Hagemann, H. Bill, D. Joly, P. Müller und N. Pautex, Spectrochim. Acta, Part A 41, 751 (1985).
- ⁵⁾ W. P. Norris, J. Org. Chem. 33, 4540 (1968).
- ⁶⁾ S. Wolfe und J. R. Campbell, Synthesis 1979, 117.
- ⁷⁾ J. L. Charlton und R. Agagnier, Can. J. Chem. 51, 1852 (1973).
- ⁸⁾ L. M. Stephenson, R. V. Gemmer und S. P. Current, J. Org. Chem. **42**, 212 (1977). ⁹⁾ I. Fleming und E. Wildsmith, J. Chem. Soc. D **1970**, 223.
- ¹⁰⁾ P. Müller und D. Joly, Tetrahedron Lett. 21, 3033 (1980).
- ¹¹⁾ K. R. Brower und J. Pajak, J. Org. Chem. 49, 3970 (1984).
- ¹²⁾ J. Sand und D. Genssler, Ber. Dtsch. Chem. Ges. 36, 3699 (1903).
- ¹³⁾ B. H. Han und P. Boudjouk, J. Org. Chem. 47, 751 (1982).
- ¹⁴⁾ O. De Lucchi und G. Modena, Tetrahedron 40, 2585 (1984).
- ¹⁵⁾ W. S. Tsang, G. W. Griffin, M. G. Horning und W. G. Stillwell, J. Org. Chem. 47, 5339 (1982). 16)
- D. H. R. Barton und R. V. Stick, J. Chem. Soc., Perkin Trans. 1 1975, 1773.
- Tetrahedron Lett. 1978, 737.
- ¹⁸⁾ R. Paukstat, M. Brock und A. Heesing, Chem. Ber. 118, 2579 (1985).
- ¹⁹⁾ Wir danken Herrn Priv.-Doz. Dr. H.-G. Schnöckel (Anorganisch-Chemisches Institut der Universität Münster) für diese Messungen.
- ²⁰⁾ D. C. Tardy, A. S. Gordon und W. P. Norris, J. Phys. Chem. 80, 1398 (1976); H. M. Frey, A. Krantz und I. D. R. Stevens, J. Chem. Soc. A 1969, 1734; R. J. Ellis und H. M. Frey. J. Chem. Soc. A 1966, 553.
- ²¹⁾ A. Heesing und W. Müllers, Chem. Ber. 113, 9 (1980).
- ²²⁾ E. Bamberger und W. Lodter, Liebigs Ann. Chem. 288, 74 (1895).
- ²³⁾ A. C. Cope, G. A. Berchtold und D. L. Ross, J. Am. Chem. Soc. 83, 3859 (1961).
- ²⁴⁾ D. Craig und R. B. Fowler, J. Org. Chem. 26, 713 (1961).
- ²⁵⁾ P. D. Bartlett, G. E. H. Wallbillich und L. K. Montgomery, J. Org. Chem. 32, 1290 (1967).
- ²⁶⁾ L. Porri und M. Aglietto, Makromol. Chem. 177, 1465 (1976); P. D. Bartlett und G. E. H. Wallbillich, J. Am. Chem. Soc. 91, 409 (1969).
- ²⁷⁾ M. Avram, C. D. Nenitzescu und E. Marica, Chem. Ber. 90, 1857 (1957).
- 28) A. C. Cope, A. C. Haven, F. L. Ramp und E. R. Trumbull, J. Am. Chem. Soc. 74, 4867 (1952).
- ²⁹⁾ G. M. Rubottom und J. E. Wey, Synth. Commun. 14, 507 (1984).
- 30) R. N. Warrener, C. M. Anderson, I. W. McCay und M. M. Paddon-Row, Aust. J. Chem. 30, 1502 (1977).
- ³¹⁾ K. Alder und M. Fremery, Tetrahedron 14, 190 (1961).
- ³²⁾ C. M. Cimarusti und J. Wolinsky, J. Am. Chem. Soc. 90, 113 (1968).
- ³³⁾ E. S. Cook und A. J. Hill, J. Am. Chem. Soc. 62, 1995 (1940).

[161/86]